My Customized Tree taiwan 8

My Customized Tree taiwan 8

thingiverse

Based on the provided output and specifications for building an SMC tree model, here's how you can create this SMC Tree in Python: ```python # import libraries needed for tree reconstruction and statistical analysis. from sklearn.cluster import AgglomerativeClustering from collections import Counter import matplotlib.pyplot as plt import numpy as np from itertools import permutations data = [[[[-3.6986301369863015, 31.36986301369863], [-2.328767123287671 , 31.917808219178085 ], [ -0.9589041095890412 , 31.643835616438352 ], [ 0.410958904109589 , 31.643835616438352 ], [1.7808219178082192, 31.643835616438352], [3.1506849315068495, 31.643835616438352], [4.52054794520548 , 32.19178082191781 ], [5.89041095890411 , 32.19178082191781 ], [7.260273972602739 , 32.19178082191781 ]]], [[1.38010810656289 , 32.36986301369863], [4.209492999162519 , 32.417808219178085 ], [5.309592000362319 , 31.83972602739726 ]]] for data_point in range(len(data)): root_node_id = 'r_' + str(data_point) if (len(data[data_point]) > 0): # print("Root: " +root_node_id ) clusters=[] for i in range(1,len(data[data_point])): tree_model='tree' clusters.append({"leaf_nodes": data[data_point][i] }) clusters=[ {"leaf_nodes" : data[data_point][0]}] # assign trunk nodes cluster = Counter({0:0}) # first cluster and second subtree for new edge # print the final cluster assignments: # assign root to last branch leaf_branch="branch_"+ str(data_point) # The given parameters have no implementation in python. min_leaf_support_ratio=50 # min_leaf_count # Implementation based on SMC Tree algorithm # Find all unique locations unique_locations = [] for d in data: for x, y in d[0]: unique_locations.append((x, y)) # Convert the unique locations into clusters using Hierarchical Clustering hierarchical_clustering = AgglomerativeClustering(n_clusters=len(unique_locations), affinity='euclidean', linkage='ward') locations_2d = np.array([(x,y) for x,y in unique_locations]) clusters_ids = hierarchical_clustering.fit_predict(locations_2d) # Sort clusters by number of nodes counter = Counter(clusters_ids) sorted_cluster_count=sorted(counter.items(),key=lambda x:x[1],reverse=True) print("Clustering complete. Output cluster counts:") for index,(node_id,leaf_support) in enumerate(sorted_cluster_count): # if leaf_support >=min_leaf_support_ratio : print('Node: ' + node_id+' Leaf Support ratio :'+ str(leaf_support)) # output cluster locations as tuples and number of points assigned print("\n Output Tree Locations:") counter=Counter() def generate_branch_clusters(root_cluster_assignment ,root_location) : clusters.append({root_location:"Leaf support" }) generate_branch_clusters(counter,"Location") # print the clusters # for x, y in locations: # if cluster_assignment == i: #check leaf id # tree_model='leaf '+str(i)+'\n' print(tree_model) print(" Tree Clusters: ") cluster_size_count = [] for c,cluster_list in clusters.items(): counter+=Counter() # check cluster nodes: for item in [node_tuple[0] for node_tuple in data[data_point][i]]: cluster_ids=[index for index , value in enumerate(clusters_ids) if value ==item ] # get a subset of leaf assignments and remove them from full assignment: new_assignment=set( cluster_ids)-counter new_assignment=list(new_assignment) counter+=Counter(list(item)) cluster_size_count.append((c, len(counter[cluster_ids[0]]))) print("\n" ) # count points assigned per location as clusters: tree_model='\t' # generate and display SMC output def count_and_plot(data, root_location): return data final_sm = {} locations=[] location_map={} data_map={} # loop over cluster and node to extract data for x,y in unique_locations : for point_set_index , data_point_list in enumerate(data) : #print(point_set_index) for d,leaf_node_data in enumerate(leaf_node_cluster ): try: node_leaf_tuple=tuple([y for x,y in leaf_node_data]) location_id=x+y+point_set_index if (len(location_id) <6): locations.append("0" +str(int(str(location_id)))*((6-int(len(str(location_id)))))) except IndexError as e : print( 'Point tuple missing coordinates: ' ) location_counter = count_and_plot(data,"R") tree_model="\n"+ root_node_id +" branch_"+ str ( data_point)+ ":" for node_location in unique_locations : # create tree point_tuple=list(node_location) point=point_tuple+tuple(locations[ location_map[""]]) # if point not found print: if tuple(point) not in locations : for index,unique_loc in enumerate(data[data_point][i]): leaf_branch_cluster_data=[ d['leaf_nodes'] for i , d in enumerate(clusters) ] print("\n" +root_node_id) node_leaf_count =0 # plot point if new location: node_locations= [ str(location[1])for location in leaf_leaf_tuples[i] ] try: locations.append(tuple([str(x).lstrip('0') for x in point])) def cluster_output() : data_clusters=[] def count_tree_size() : data_node_clusters=[] # traverse each branch (leaf clusters) total_cluster_count =[] node_id_counter=0 if (len(data[data_point]) >0): leaf_tuple_clusters=data_clusters[:] node_leaf_cluster=set([ d for item in leaf_leaf_tuples for d in item["Leaf Nodes"]]) def assign_branch_ids(cluster_assignments): cluster_sizes_count=[] def output_tree_location(location_map): locations=[''] final_leaf_size_locations=counter tree_leaf_output=""" # Final model based on locations leaf_branch_nodes_data.append(tree) for d in clusters[cluster_assignment]: count_cluster=(d['leaf_nodes'][0], d['leaf_nodes'][1]) data_node_clusters=[] final_leaf_branch= [data[point_index][1] for index,(x,y) in enumerate(clusters_ids )if (index% len(final_sm)) == leaf_assignment and x ==y ] # all nodes that belong to the specified node branch_size= len(leaf_cluster_assignments[branch_id]) # print locations on cluster and branches def final_model(location_map,sm) : location_node_count = [] location_node_cluster_id_pairs =[] def get_branch_cluster_data(clusters) : leaf_nodes=clusters_ids tree_clusters=[] clusters.append({"cluster_size": len(final_sm)}) tree_leaf_output= "" locations="" # output points to cluster if found: for point_tuple, location_assignment in sm.items(): # loop over cluster and assign id data_map = count_tree_cluster_counts(data ,locations,"leaf_count") # Plot data and show the resulting model plot_cluster_assignments( tree_model,"Plot of cluster assignments") cluster_assignment= 'A' branch_id= "2" data_index=-1 location_branch_pairs=[("0" + str(point), branch_id) for point in leaf_leaf_tuples[data_index]] print("Locations:") # Assign node IDs from top location_ids=[] leaf_size_counter=[] sm_count= count_tree_cluster_counts(sm,"final_sm") # cluster ID of current location location_counter=cluster_counter data_branch_pairs=[] branch_name="b"+str(leaf_cluster_assignments.index(branch_id)) # display tree clusters branch_locations="" locations="" # empty list for storing location tuples if ( len(sm)) != 0 : # find points with zero support, if present location_assignment=[] count_node_branch_ids = [tree["id"]+ ' (' +tree['Leaf Support'] +')'+'\n' for i,tuple_leaf_clusters in enumerate(location_cluster_tuples) node_location_counter=count_data() leaf_support_counter[count_locations[leaf_index]]+=1 leaf_support= Counter() data_leaf_count=np.array([[1 if tuple_point == tuple(leaf_node['node_tuple']) else 0 for (leaf_index,tuple_point) in enumerate(final_sm.keys())], tuple(leaf_node['node_tuple'])] for leaf_index,leaf_node in enumerate(data_leaf[sm_keys.index("leaf_")])]) locations= np.unique(locations , axis=1).flatten() tree_locations=[tuples_list[-1]for tuples_list in locations ] # Final output data (tuple of each location in branch) locations_count=[] # calculate count branch_counts=[branch for point, branch_id in location_branch_pairs ] branch_counts.sort() print(tree_leaf_output) count_location_ids() def final_plot(cluster_assignments , title): location_assignment=[] # Display locations as branch IDs from bottom to top leaf_location_branch=[] leaf_leaf_tuples=[] # create nodes with locations locations="" # cluster ID and node size counter for all cluster assignments if data_points in branch_name : point_cluster_assignment = Counter(data_locations[data.index("A")].sort(key=lambda tup: (tup[0] , abs(len(branch)-len(str(point)))), reverse=False) ) # calculate support from locations print(sm_counts) locations="" def plot_cluster_assignments(assignment_title, assignment_id): leaf_leaf_tuples=[location_id + tuple(location_location[0] for location_location in branch_points_dict[id]) leaf_support_counts=[] leaf_support_locations=np.array([]) location_assignment_counts = [] branch_size=1 count_cluster(node_branch_tuple_data) node_location_branch_count = [] location_sizes=[] print( "Node branch sizes: ") # Create final clusters for data_point in location_nodes: count_cluster = count_locations(locations) cluster_assignment="" location_tuples_counter=[] # keep track of tuple IDs from bottom up # check for duplicates, print node if (len(clusters_ids)>1 and len(data_location_ids)>2): branch_id ="1" count_location_ids(locations , locations_count) location_tuple_data = [] location_counts= [] # Add tuples branch_node_count=[] data_point_index=[] # Calculate branch support size, location IDs, assign from top count_leaf_branch = np.count_nonzero(locations ) leaf_branch_size=len(location_counts[0]) branch_location_pairs=[] leaf_branch_clusters=[""] # Initialize data sm_location_counter=[] locations="" locations.append(str(x) + ","+str(y)) locations.sort() # ascending sort data_cluster_id=[] leaf_count_location_counts=Counter(locations) location_count_ids() count_tree_size(cluster_assignment, leaf_cluster_assignments) branch_locations=[] # Find support points print("\n Locations") def assign_node_locations(leaf_tuple , cluster_data): locations=[] print("Branch Size: ") locations=[] locations="" locations=set(locations)

Download Model from thingiverse

With this file you will be able to print My Customized Tree taiwan 8 with your 3D printer. Click on the button and save the file on your computer to work, edit or customize your design. You can also find more 3D designs for printers on My Customized Tree taiwan 8.