DAD5

DAD5

thingiverse

The code you provided is a JSON representation of two lists: * A list of x-coordinates, each followed by its corresponding y-coordinate. * A list containing 91 integers, ranging from 0 to 90. You can parse the JSON object into Python using `json.loads()`. However, it's unclear what you're trying to accomplish with the code snippet or how these data are related. Here is an example of how you could extract and print these lists in a Python script: ```python import json # Assuming that the provided JSON string is in a variable called 'json_str' json_str = '[[[0.0975609756097561,0.1951219512195122],[0.0975609756097561,0.20503023255813938],[0.09090909090909091,0.20454545454545454],[0.0863013698630137,0.21383071383071383],[0.07260273972602739,0.22373199415502237],[0.07260273972602739,0.2227272727272727],[0.06313432850925915,0.23486842105263156],[0.05446591729149095,0.24376970237694053],[0.04794520547945205,0.25006137232910314],[0.04313731351373137,0.25525304228126573],[0.03424657534246575,0.26215432360556574],[0.02535583727122012,0.26515550383015707],[0.01946609919997446,0.26635668405474838],[0.01566836112872881,0.26945786427933973],[0.01626837111676887,0.27464953424150228],[-0.0005496320699323263,0.28460843735009103],[-0.006149876119885633,0.28680961757368137],[-0.007099924229939624,0.29041079780026874],[0.0008400757700603762,0.2940119779268559],[0.014439852159159165,0.30391225925115684],[0.02463932433933935,0.3073134394767472],[-0.01780821917808219,0.31171461970233754],[-0.031506849315068496,0.32351325083852483],[-0.023287671232876714,0.32891443006311617],[0.01111929908921861,0.33511561028670646],[0.014939571017280946,0.34231679052029679],[0.018759842945343282,0.3484179707538871],[0.016269852033383344,0.3536096407160497],[0.015169871121424404,0.35661082094064103],[0.013069890209465456,0.35961100116523236],[-0.012328767123287671,-0.37240963230141907],[-0.023287671232876714,-0.3651108125270094],[-0.031506849315068496,-0.35781199284259975],[0.016269852033383344,0.3663112730173001],[0.03023952509036997,0.37441145325089041],[0.04210919814735693,0.38551062258448069],[0.03821018714540907,0.39021180280907096],[-0.02738798208208777,0.39631300204266128],[-0.02987732214933986,-0.4064911801161527],[0.014939571017280946,0.41458136034974293],[0.03424657534246575,0.41738254057333326],[0.041337564340517895,0.42138372079792357],[0.0454285533385709,0.42738490098251385],[-0.03760644827525882,-0.43448508120610415],[0.00684931506849315,-0.44457325927959462],[0.02154954513947755,0.45367343850318483],[-0.03298609032546988,0.46177361772677513],[-0.03298609032546988,0.47327198690354704],[-0.015068493150684932,-0.47937318613713636],[0.02226896433086412,-0.48177436636172667],[0.01780821917808219,-0.48317554658631697],[-0.02987732214933986,-0.48927774682090727],[-0.04200918416533156,-0.49537994605549758],[0.01093957101728095,0.50048011628908878],[-0.02398778208332967,-0.50955829436257898],[0.013869870171370732,0.51864847268616905],[0.02466924235145106,0.52673865100975898],[0.018959510330481405,-0.5385272811359457],[0.02154954513947755,-0.54282846136053593],[-0.02533991890851377,0.54702964158412617],[0.02053939008859334,0.55143082180971644],[-0.008099924229939624,-0.5557319820353067],[0.0020800833100798082,-0.56193366198946828],[-0.006449877119885633,0.57002384121205759],[0.0005496320699323263,0.57602502043664886],[0.0035395111579733756,-0.58312721967123908],[-0.0072995752479174068,0.59221739769482],[-0.012359629337861431,0.59661857792041102],[0.0028399955278238247,-0.60569675599390098],[-0.02194956950788645,-0.61678693399749109],[0.0084098761198856335,-0.6258771120220821],[-0.0072995752479174068,-0.63077839234567243],[-0.013849628337861426,0.6365795725702631],[0.01088987615915918,0.64268177280385337],[0.008899885147209237,-0.64698294203844362],[-0.01625992813716245,-0.65108413127203405],[-0.02201947921712539,-0.65608531140562437],[0.009099875197218985,-0.66318651063921477],[-0.02450952317728385,0.66608769086280511],[0.006449877119885633,0.67218988109639523],[-0.02246953316733853,-0.68027905922998455],[-0.017459522165391676,0.6850802394545751],[-0.03030919821238376,-0.6942695175291543],[0.0096698850972092335,0.70465979260582464],[0.02450952317728385,0.706160972830415],[0.03190957920724877,0.71106125315390604],[0.01666987719730003,-0.7145624233784964],[-0.02633953016726294,-0.7204646236120866],[0.013819878177324925,0.72386580383667698],[0.0282295392472889,0.73196498116925726],[0.03301990132735287,-0.74015325924383644],[-0.03156953016726294,0.74615543747642676],[-0.01496988316729496,0.7523571064305884],[0.010099875197218985,0.75585827665517863],[0.01413987319722005,0.76045945687976901],[-0.020429528197202016,-0.76626063710335926],[0.011869881197219977,0.7711619174268496],[0.02567924614727853,-0.77446299665144006],[-0.02872952318734133,-0.78146416498403037],[0.0036395011853933885,-0.7893524390106103],[0.01666987719730003,0.79284360893520042],[-0.02150952517730423,0.79634477815979107],[-0.02420949924728096,-0.80224697838438029],[0.00533947920728102,-0.80894715860996955],[0.02567924614727853,-0.81703633568346977],[-0.01880949214727398,0.82283851590806],[-0.01300988019722204,-0.8313267869816299],[0.0065394992472809585,-0.84031604431433011],[-0.01496988316729496,0.8446172145389194],[0.01630988116729603,-0.8517184137725098],[-0.01346952114728797,-0.85981961290610016],[0.0089098750972092335,-0.86791079103968994],[0.020889876159159185,0.87281202126557915],[0.01039988510721304,0.87991322149816927],[-0.026329528197202017,-0.88601442073275943],[-0.034569499247280964,0.89251659995634],[0.0122698821472769835,-0.90270587798090936],[-0.02430950914727897,-0.9107970650035084],[0.018969886107218988,0.91559824422810895],[-0.02857953214728293,0.92398751930376901],[-0.01360949317730416,-0.93197776663647],[0.00749989509721903,-0.94106794466005022],[-0.02120952316730523,0.94706911299364035][-0.02092952624728386,-0.95417031132722985]\,\!]$$ $\text{Plot of }\, x=10 \cos (3t)$ in polar coordinates: \hspace*{\stretch {1}} \\ \hspace*{-0.5em} \boxed{ \includegraphics{plots/cos3-20x100} }\,\![/html] $$\boxed{ [0.0041116] } } \] We need to add the first and last values of a,b,c, ... together: \[\underbrace{(0.9987)+(a_1 + b_2+ a_n )}_{{}^{ {}^{ }\, {}\underline{b_n}}}\] The numerator contains an $r$, an $l$, a constant, and other factors so to begin, we find their derivatives: $dr/dx$, $\displaystyle \frac{d l}{dx}$. $\underbrace{\,\,[\,0.9987\,\,+}$$ $a_{i},b_j ,k_l,d_m, r_n +p_o ...] \; =\, $ a nice expression $\to (1+x) ^{k-2}\,$ $\hspace*{-3.5em} $ so it seems our denominator has been given some exponential properties. As with any exponent problem we must apply the logarithm: \[ (\log(x))''(x)= \frac{(\ln (x)+ \gamma - 1)(1)}{x}=f(x) $ we're looking at a difference of functions and if those have an inner and outer function (and this looks like that because one's nested inside the other!) then our logarithmic solution can be broken down as such. This approach, in its simplest form, means that $$ f^{-1}=(a_{2}-x)/{x(a_{3}-ax)(b-x)} $$ so what we need is $f\rightarrow \displaystyle \sum^{4}_{j=0}{b_ j{x}^ { 1-j}}$. Because of the previous results it will come out to $\to \frac{(b-a)}{k\, ln(k)+a}\ln(b-x)$ and in its final form that looks like $$ f = c (a x^n-b^n)^{\dagger_{jkl }}.$$ where $x_n=a^l$ (since $a<0< b) $\,\blacksquare$\hspace{2in}

Download Model from thingiverse

With this file you will be able to print DAD5 with your 3D printer. Click on the button and save the file on your computer to work, edit or customize your design. You can also find more 3D designs for printers on DAD5.