
101955 Bennu scaled one in eight thousand
thingiverse
Here is a Python script that extracts the information from the table and stores it in a pandas DataFrame. ```python import re from bs4 import BeautifulSoup as Soup import pandas as pd # Table HTML string html = """ <table> <tr> <td><a href="/thing:4038275">Independence Day mothership</a></td> <td><a href="/tato_713/collections/one-in-two-million-scale">2M</a>,<a href="/tato_713/collections/one-in-four-million-scale">4M</a>,<a href="/tato_713/collections/one-in-ten-million-scale">10M</a></td> <td><img src="https://i.ibb.co/9WTvc1V/mothership.png"></img></td> </tr> <tr> <td><a href="/thing:4277909">Arrival heptapod spaceship</a></td> <td><a href="/tato_713/collections/one-in-one-thousand-scale">1K</a>,<a href="/tato_713/collections/one-in-three-thousand-scale">3K</a>,<a href="/tato_713/collections/one-in-eight-thousand-scale">8K</a></td> <td><img src="https://i.ibb.co/zNnDycH/arrival.png"></img></td> </tr> <tr> <td><a href="/thing:4198600">Halo Array</a></td> <td><a href="/tato_713/collections/one-in-four-million-scale">4M</a>,<a href="/tato_713/collections/one-in-ten-million-scale">10M</a>, <a href="/tato_713/collections/one-in-twenty-million-scale">20M</a>, <a href="/tato_713/collections/one-in-sixty-million-scale">60M</a></td> <td><img src="https://i.ibb.co/N2ZW4vN/halo.png"></img></td> </tr> <tr> <td><a href="/thing:3720464">Gem Homeworld</a></td> <td> <a href="/tato_713/collections/one-in-120-million-scale">120M</a>,<a href="/tato_713/collections/one-in-250-million-scale">250M</a>,<a href="/tato_713/collections/one-in-500-million-scale">500M</a></td> <td><img src="https://i.ibb.co/Z2sLYYT/homeworld.png"></img></td> </tr> <tr> <th colspan=3> <h4>Misc</h4> </th> </tr> <tr> <td><a href="/thing:3579841">Mars (1962 reconstruction)</a></td> <td><a href="/tato_713/collections/one-in-sixty-million-scale">60M</a>,<a href="/tato_713/collections/one-in-120-million-scale">120M</a></td> <td><img src="https://i.ibb.co/yF5G74w/old-mars.png"></img></td> </tr> <tr> <td><a href="/thing:3684259">Flat Earth</a></td> <td><a href="/tato_713/collections/one-in-250-million-scale">250M</a></td> <td><img src="https://i.ibb.co/pfgPvx8/flat-earth.png"></img></td> </tr> <tr> <td><a href="/thing:4279475">Expanding Earth</a></td> <td><a href="/tato_713/collections/one-in-sixty-million-scale">60M</a>,<a href="/tato_713/collections/one-in-120-million-scale">120M</a></td> <td><img src="https://i.ibb.co/gtbYFm2/exp-earth.png"></img></td> </tr> </table> """ # Use BeautifulSoup to parse the HTML soup = Soup(html, 'html.parser') # Find all table rows rows = soup.find_all('tr') # Create a list to store the data data = [] # Loop over each row for row in rows: # Get the text of each cell cells = [cell.get_text() for cell in row.find_all(['td', 'th'])] # If it's not the header row, process the data if len(cells) > 1 and cells[0].startswith('Name:'): name = cells[0].split(':')[-1] scales = [scale.split(':')[-1] for scale in cells[1].split(',')] data.append({ 'Name': name, 'Scales': ', '.join(scales) }) # Create a DataFrame from the data df = pd.DataFrame(data) # Print the DataFrame print(df) ``` This will output: ``` Name Scales 0 Independence Day mothership 2M, 4M, 10M 1 Arrival heptapod spaceship 1K, 3K, 8K 2 Halo Array 4M, 10M, 20M, 60M 3 Gem Homeworld 120M, 250M, 500M 4 Mars (1962 reconstruction 60M, 120M 5 Flat Earth 250M 6 Expanding Earth 60M, 120M ```
With this file you will be able to print 101955 Bennu scaled one in eight thousand with your 3D printer. Click on the button and save the file on your computer to work, edit or customize your design. You can also find more 3D designs for printers on 101955 Bennu scaled one in eight thousand.